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Abstract—This work focuses on automating action segmen-
tation in GUI (Graphical User Interface) videos, where actions
involve tasks like clicking, scrolling, and typing, rather than phys-
ical movements. Traditional action segmentation relies heavily on
human manual labeling, which is time-consuming and difficult to
scale. Although several automated approaches exist for keyframe
extraction, they typically underperform with GUI videos due to
the unique characteristics of GUI videos: 1) GUI items are often
small and difficult to detect, 2) actions are highly localized, and
3) action durations vary significantly. To tackle these challenges,
we adapt the ASFormer architecture with several GUI-specific
enhancements. We introduce a two-stream encoder that extracts
both global and fine-grained visual features from low- and high-
resolution frames, a frame differencing block to highlight subtle
temporal changes, and a multiscale temporal convolution module
to capture both short- and long-term dependencies. Extensive
experiments demonstrated the effectiveness of our model. Code is
available at: https://github.com/Peggy1210/eecs545-final-project

Keywords—Action Segmentation, GUI Video Understanding,
Vision Transformer

I. INTRODUCTION

Action segmentation is a crucial task in video analysis,
enabling the identification of meaningful events within a
continuous video stream. While approaches primarily focus
on human activities in real-world environments, an emerging
area of interest is action segmentation in GUI (Graphical
User Interface) videos, where actions involve interactions with
software interfaces rather than physical movements. Accurate
segmentation of these interactions enhances content clarity,
improves user comprehension, and supports a variety of appli-
cations, including GUI tutorial summarization [1], automated
task guidance, and training GUI-based robotic agents [2], [3],
thereby enhancing automation in various domains.

In GUI videos, interactions typically include actions such as
clicking, scrolling, dragging, keyboard input, etc.; keyframes
refer to the most representative frames within an action se-
quence. Traditionally, this process has relied on human label-
ing, which is labor-intensive and difficult to scale, and gesture-
matching techniques [4] often fail due to the increasingly high
dimensionality and complexity of modern GUI videos.

With the rise of deep learning, Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs) were
adopted for video understanding, but fall short in model-
ing long-range dependencies. Transformer-based architectures
have since emerged as the state-of-the-art for video seg-
mentation, providing improved handling of temporal context,
boundary accuracy, and computational scalability. However,
based on our background research, few existing models are

specifically designed for GUI video segmenting. In particular,
state-of-the-art models often underperform in this domain due
to the unique characteristics of GUI videos. We identify three
challenges in segmenting GUI videos:

1 Dispersed and fine-grained visual elements: Unlike
real-world videos, where a central object dominates the
frame, GUI elements are often small in size and scattered
across the screen. Also, some elements, such as text, con-
tain rich details. Meaningful representations are required
to preserve this information.

2 Subtle visual changes: Many interactions, such as click-
ing a button, selecting a menu item, or entering text, result
in only subtle visual differences between consecutive
frames. These changes lack strong visual cues and are
hard to detect in pixel-level comparisons.

3 Varied action durations: GUI actions vary significantly
in temporal length. For example, a click may last less than
a second, whereas scrolling can span several seconds.
This poses difficulties for models not designed to handle
multi-scale temporal dynamics.

To address these challenges, we propose a novel action
segmentation framework for GUI videos. Particularly, we em-
ploy vision transformers (ViTs) to extract video representation
to capture spatial detail and preserve fine-grained interface
elements. For the second concern, we combine both low- and
high-resolution features to add information to the prediction
process, supplemented by a frame differencing module to
highlight subtle frame-wise changes. Lastly, we introduce a
multiscale convolution mechanism that captures long- and
short-term dependencies. Empirical results demonstrate that
each architectural component improves segmentation perfor-
mance, and the overall system outperforms our baseline model.
Our contribution is twofold:

• We demonstrate the effectiveness of transformer-based
representations in capturing fine-grained spatial details
critical to GUI video segmentation.

• We enhance the segmentation architecture to better detect
subtle and temporally diverse actions specific to GUI
interaction patterns.

II. METHODOLOGY

In this paper, we propose GUI-ASFormer, focusing on two
key aspects: 1) Enhanced spatial understanding of GUI frames,
and 2) Improved temporal modeling of user interactions. The
overall architecture is shown in Figure 1.



Fig. 1. The architecture of GUI-ASFormer.

A. Video Feature Extraction

We extract frame-wise features and stack them into a unified
video representation. To effectively capture both global and
fine-grained GUI details, we introduce two vision transformer
models: Swin Transformer [5] for low-resolution features and
EVA2-CLIP-L [6] for high-resolution features.

Low-Resolution Features. We use pretrained Swin Trans-
former (“swinv2 base window8 256”) with an additional spa-
tial attention layer to extract low-resolution (256×256 pixels)
frame images. Swin Transformer builds upon the Vision Trans-
former (ViT) architecture, introducing hierarchical feature
maps and shifted window attention to enhance computational
efficiency and multi-scale feature learning.

In the context of action segmentation, GUI actions often
exhibit subtle temporal variations and occur at multiple spatial
scales. The hierarchical design of Swin Transformer enables
the model to capture both local and global information, while
the shifted window mechanism increases the receptive field
across layers without incurring high computational costs. This
architecture is particularly effective for modeling the subtle,
region-specific changes common in GUI interactions.

The output of Swin Transformer for each frame is an
8 × 8 spatial grid of feature embeddings. To aggregate these
regional features into a single frame-level embedding, we
apply a spatial attention mechanism followed by a CNN
fusion layer. The spatial attention layer assigns importance
weights to different regions, enabling the model to focus on
the most informative parts of the GUI interface. The CNN-

based fusion then aggregates these weighted features into a
global embedding at dimension Dlow.

This process enhances the model’s ability to capture which
parts of the GUI are most critical for downstream action
segmentation, especially when fine details (such as buttons
or text fields) are key to identifying user actions.

High-Resolution Features. Although Swin Transformer
provides strong feature representations, it has fixed input
dimensions in pre-trained settings and may not fully preserve
fine details in GUI frames when resized to lower resolutions.
Unlike conventional image recognition, low-resolution images
barely meet the demands of GUI videos, as small screen
elements can become too vague to recognize after resizing.

To address this, we adopt EVA2-CLIP-L [6], a smaller
and efficient vision transformer model (149M parameters),
to extract high-resolution features. Input frames are resized
to 1024 × 1024 pixels and passed through EVA2-CLIP-L to
obtain detailed frame-wise embeddings. To align with the
dimensionality required by subsequent modules, the high-
resolution output is projected through a fixed-weight linear
layer, producing frame-level features with dimension Dhigh.

The embeddings from all frames in a video are stacked
along the temporal axis. As a result, each video is represented
by two sequences: Xlow ∈ RDlow×T for low-resolution
features and Xhigh ∈ RDhigh×T for high-resolution features,
where T denotes the number of frames in the video.



B. Action Segmentation Model

The goal of this stage is to assign an action label to
each frame based on the extracted visual features. We adopt
ASFormer as the backbone for temporal modeling, due to its
strong performance and architecture specifically designed for
action segmentation tasks.

ASFormer introduces three key innovations to address the
challenges of limited training data and long video sequences:
(1) temporal convolutions within each encoder block to en-
force local connectivity and provide inductive bias; (2) a hier-
archical attention pattern that progressively expands receptive
fields to capture both short- and long-range dependencies; and
(3) a multi-stage decoder with cross-attention to iteratively
refine predictions. These design choices enable ASFormer to
achieve state-of-the-art performance on public benchmarks.

We use low-resolution embeddings extracted from Swin
Transformer as the primary input to ASFormer. Before enter-
ing the encoder, these embeddings are first processed through a
frame differencing block to highlight subtle temporal changes.
Specifically, the difference between consecutive frames is
computed as:

f ′
t = ft − ft−1

, where ft denotes the frame feature at time t. For consistency,
we pad a zero vector at the first frame (t = 0) to maintain the
original sequence length.

A multiscale temporal convolution block (MST conv) fol-
lows immediately after to extract temporal patterns at mul-
tiple scales. This module consists of nbranches parallel 1D
convolution branches, each with different kernel sizes (e.g.,
3, 5, 7) and dilation rates (e.g., 1, 2, 4). The outputs from
all branches are concatenated along the channel dimension,
forming a feature of size (nbranches ·Dlow)×T . A final 1×1
1D convolution is applied to project the concatenated features
back to the original dimension Dlow × T . This design allows
the model to jointly capture local, mid-range, and long-range
temporal patterns while maintaining computational efficiency.

The encoder generates initial frame-wise action predictions.
Each encoder block contains a dilated temporal convolution
feed-forward layer and a single-head self-attention layer, each
followed by a residual connection, instance normalization,
and ReLU activation (Figure 2). The feed-forward layer uses
dilated convolutions instead of point-wise fully connected
layers to introduce local inductive bias, which is beneficial for
modeling the temporal continuity of actions across frames. To
efficiently handle long video sequences, the encoder applies a
hierarchical attention pattern, where each self-attention layer
is restricted to a local window of size w = 2i at encoder layer
i. The dilation rate of the temporal convolution layer is also
doubled correspondingly. This reduces the memory complexity
from O(J × T 2) in a standard Transformer to approximately
(w − ε) × 2J × T , where J is the number of encoder layers
and ε is a small constant.

In later decoding stages, high-resolution embeddings ex-
tracted from EVA2-CLIP-L are projected through a CNN
layer and used to refine the low-resolution predictions through

cross-attention. Each decoder contains a fully connected layer
followed by a series of decoder blocks (Figure 2). Similar
to the encoder, the decoder structure consists of a temporal
convolution and a hierarchical cross-attention layer with pro-
gressively expanding local windows. In cross-attention, the
query Q and key K are derived from the concatenation of
the encoder output and the previous decoder output, while
the value V is derived solely from the previous decoder
output. This design allows external high-resolution information
to guide attention without disturbing the internal prediction
space, ensuring stable refinement [7].

The multi-stage decoder structure, where the output of
each decoder stage is passed to the next, further improves
the refinement as shown in Figure 1. The cross-attention
mechanism allows for bringing in external information to
guide the refinement process. A weighted residual connection
is used between the feed-forward and cross-attention outputs:

out = feed forward(x)

out = α× cross attention(out) + out

, where α controls the influence of cross-attention. We ini-
tialize α = 1 for the first decoder and exponentially decay it
across subsequent stages, progressively reducing dependence
on external features to mitigate error accumulation.

In our approach, we combine two streams of embeddings
rather than relying solely on high-resolution features. High-
resolution models are typically heavier, making it compu-
tationally impractical to generate embeddings directly from
high-resolution frames. To address this, we introduce EVA2-
CLIP-L, a relatively lightweight encoder optimized for effi-
cient coarse representation extraction without excessive com-
plexity. However, these coarse embeddings alone are not
sufficient for accurate video segmentation, as they lack the
detailed temporal structure needed to precisely localize ac-
tions. Therefore, we use low-resolution embeddings as the
primary input and incorporate high-resolution embeddings
through cross-attention refinement. The two streams offer
complementary information: low-resolution features capture
robust global structure, while high-resolution features refine
fine-grained local details.

Fig. 2. Encoder (left) and decoder (right) architecture.



C. Training Objectives

The loss function is a combination of classification loss and
a smoothing loss. The classification loss is a cross-entropy loss
computed over all frames:

Lcls =
1

T

∑
t

(−log yt,c)

, where yt,c denotes the predicted probability for the ground-
truth label c at time step t. The smoothing loss is defined as
the mean squared error (MSE) over the log-probabilities to
reduce the over-segmentation errors:

LT−MSE =
1

TC

∑
t,c

(log yt,c − log yt−1,c)
2

The loss function for a single stage Ls is a combination
of the classification and smoothing losses, weighted by a
hyperparameter λ. To train the complete model, we minimize
the sum of losses over all stages:

L =
∑
s

Ls =
∑
s

Lcls + λLT−MSE

III. RELATED WORK

A. Video Representation

Traditional video segmentation relied on handcrafted fea-
tures like optical flow and SIFT (Scale-Invariant Feature
Transform) [8]. While effective for capturing local motion
and key points, these approaches struggled to handle com-
plex scene variations and dynamic changes. With increasing
video complexity, deep learning approaches such as Recurrent
Neural Networks (RNNs) (e.g., LSTMs and GRUs), and 3D
CNNs (e.g., I3D [9]) were adopted to jointly model spatial and
temporal information. However, these models usually faced
efficiency and scalability challenges.

Recently, transformer-based architectures, particularly Vi-
sion Transformers (ViT), have been introduced for video
feature extraction with enhanced interpretation of frame-wise
information. ViT treats the image as a sequence of patches,
using self-attention to capture long-range dependencies and
global context, making it effective for extracting rich visual
representations. However, ViT’s quadratic complexity with
respect to input size makes it computationally expensive,
especially for high-resolution video. Swin Transformer [5]
addresses this issue by introducing hierarchical embeddings
and a shifted window attention mechanism, reducing compu-
tational overhead while preserving spatial relationships. This is
particularly advantageous for GUI video segmentation, where
screen changes are often subtle and spatial variations are small.

While Swin Transformer improves efficiency, it requires
resizing input images to relatively low resolutions, typically to
192×192 or 256×256, which can result in the loss of critical
fine details. This is especially problematic in GUI videos
where subtle interface changes are important for accurate
segmentation. To address this, models like BLIP-2 [9] and
ViT-H/14 [10] support high-resolution inputs through larger
patch sizes and global attention. However, these approaches

usually come with significant computational costs and memory
usage. To strike a balance between performance and efficiency,
EVA-CLIP [6] offers a better solution, supporting flexible
input sizes while preserving fine-grained visual details. As
a more lightweight model, it is well-suited for GUI video
segmentation, where both spatial precision and efficiency are
critical. This flexibility allows for higher resolution without
the heavy computational costs seen in other models.

B. Action Segmentation Model

Early models used motion cues (e.g., frame differencing,
optical flow [4], [11]), probabilistic frameworks (e.g., CRFs
[12]–[14], HMMs [15], [16]), or frame-wise prediction using
RNN-based models [17]–[21]. Although effective, these meth-
ods faced challenges in capturing long-range dependencies and
achieving efficient sequence modeling.

Temporal Convolutional Networks (TCNs) [22] addressed
some of these limitations by enabling parallel temporal mod-
eling through convolutional layers, providing a foundation
for modern action segmentation architectures. More recently,
transformer-based models have been introduced, leveraging
self-attention mechanisms originally developed for natural lan-
guage processing to capture dependencies across frames more
effectively. Unlike traditional frame-wise classifiers, trans-
formers model long video sequences with improved efficiency
and global context understanding.

ASFormer [23] extends the concept of multi-stage TCNs
[7] by integrating them with transformer architectures, re-
ducing temporal complexity while achieving accurate frame-
level segmentation. Building upon ASFormer, several recent
models have further advanced the field. FACT [24] introduces
a cross-attention mechanism to facilitate bidirectional infor-
mation exchange between frames and action representations.
UVAST [25] incorporates self-supervised learning, making
it applicable to both supervised and unsupervised segmen-
tation tasks. BAFormer [26] focuses on explicitly modeling
action boundaries, improving temporal precision, and mitigat-
ing over-segmentation and under-segmentation errors. These
models represent the current state of the art in action segmen-
tation, addressing critical challenges related to computational
efficiency, accuracy, and boundary detection.

C. GUI Video Segmentation

Based on our research, a few segmentation models have
been specifically fine-tuned for GUI videos. Video2Action
[4] proposed a segmentation framework that identifies and
localizes actions by focusing on frame-to-frame changes and
applying topological methods for precise action localization. It
effectively captures subtle visual transitions, which is crucial
for GUI scenarios where user interactions often involve mini-
mal changes. Its topological approach better captures spatial-
temporal relations than general-purpose models, which often
miss subtle GUI transitions. However, its range of recognizable
actions is limited to only tap, scroll, and backward gestures,
restricting its applicability to more complex GUI interactions.



D. Our Approaches

Our approach utilized the well-established action segmenta-
tion model ASFormer on GUI videos. The architecture serves
as a strong backbone model and thus can be easily adapted.
Specifically, we added two stream transformer-based encoders,
combining Swin Transformer and EVA2-CLIP-L to capture
both global and fine-grained visual features. Additionally, we
enhance the model with a frame differencing block to highlight
subtle temporal changes and a multiscale temporal convolution
block to better capture short- and long-term dependencies.
This GUI-specific adaptation differentiates our approach from
general-purpose video segmentation techniques and enables
more precise automation for UI analysis and testing.

IV. EXPERIMENT RESULTS

A. Dataset

The GUI-world dataset comprises a diverse collection of
GUI videos, including content from iOS, Android, XR, web-
sites, and other platforms. In this study, we focus on the
website subset of GUI-world. Compared to mobile interfaces
such as iOS and Android, website pages typically feature more
detectable visual elements, making them more suitable for our
segmentation objectives.

Following preprocessing, we select videos with durations
between 5 and 50 seconds, resulting in 2,031 videos. We define
actions as user interactions involving either mouse or keyboard
inputs. A total of seven types of interactions are identified, as
detailed in Table I.

TABLE I
ACTION TYPES IN GUI-WORLD WEBSITE VIDEOS

Mouse Keyboard

scroll input

hover delete

drag enter

click

B. Measurements

We evaluate model performance using frame-wise accuracy,
segmental F1 score at overlapping thresholds of 10%, 25%,
and 50% (denoted as F1@{10, 25, 50}), and segmental edit
distance. Frame-wise accuracy measures the percentage of
correctly labeled frames. The segmental F1 score uses an
intersection-over-union (IoU) threshold to determine overlap
between predicted and ground-truth segments. Segmental edit
distance quantifies the minimum number of edit operations
(insertions, deletions, substitutions) needed to align predicted
and ground-truth segmentations.

Although frame-wise accuracy is widely used for action
segmentation, it is biased toward longer actions and under-
penalizes over-segmentation errors. Therefore, following prior
work [22], we primarily adopt the segmental F1 score as the
main metric for evaluating segmentation quality.

C. Experiment Settings

We extract frame images from videos at 30 frames per sec-
ond (FPS) and resize them to 256×256 pixels and 1024×1024
to match the input dimensions required by the Swin Trans-
former and EVA2-CLIP-L models, respectively. The number
of channels is configured to 2048 (Dlow = Dhigh = 2048).

To facilitate training and evaluation, we partition the dataset
into five non-overlapping subsets, each containing approxi-
mately 400 videos. Each subset is split into 80% training and
20% testing videos. In this section, we use split 1 for testing.
Although we do not perform full cross-validation, this splitting
strategy provides a consistent and manageable structure for
experimentation, as shown in Section V. We train the model
for 120 epochs using the Adam optimizer, with an initial
learning rate of 0.0005.

D. Effect of Number of Blocks

The number of blocks J in the encoder and decoder is an
important hyperparameter. Increasing J expands the receptive
field and improves the model’s ability to capture long-range
temporal dependencies, but also results in higher memory
consumption. As shown in Table II, performance improves
steadily up to J = 10. Beyond this point, all metrics decline
noticeably, suggesting that deeper architectures may lead to
overfitting or optimization instability. Additionally, GPU mem-
ory usage increases significantly with larger J . To balance
segmentation performance and computational cost, we adopt
J = 10 for all subsequent experiments.

TABLE II
COMPARISON OF DIFFERENT BLOCK NUMBER J

J Params (M) F1@{10,20,50} Edit Acc

1 75.878 11.71 6.94 2.70 13.92 46.45

4 76.176 55.08 47.67 30.39 51.78 57.29

6 76.375 64.45 58.22 38.88 61.16 61.91

8 76.574 65.51 60.33 40.51 61.96 61.86

10 76.773 66.36 61.14 41.36 61.81 61.83

12 76.972 62.12 56.06 38.09 55.91 61.46

E. Effect of Number of Stages

We evaluate the effect of using a multi-stage architecture,
as shown in Table III. The table compares the prediction
performance of a single-encoder model to multi-stage models
with varying numbers of decoder stages. Although all stages
achieve comparable frame-wise accuracy, the quality of the
predictions differs significantly. From the low edit distance and
F1 scores, it is clear that the encoder-only predictions produce
substantial over-segmentation errors. Introducing a multi-stage
architecture significantly reduces these errors and improves
the F1 scores. This effect is clearly visible with three or four
decoder stages, which gives a huge boost to the performance.
Adding a fifth stage provides only marginal improvements,
likely due to saturation.



The refinement effect of the multi-stage architecture is also
illustrated in the qualitative results shown in Figure 3, where
each additional stage leads to progressively more accurate
predictions. However, after the third stage, improvements
become negligible. Based on these observations, we adopt a
three stage decoder architecture for all experiments.

Fig. 3. Segmentation results at each stage of a five-decoder architecture.
Each bar represents a different action segment within a video. At Stage 0,
the model exhibits substantial over-segmentation, producing many fragmented
segments. This is progressively corrected in Stage 1 and Stage 2. By Stage
3, the predicted segments closely align with the ground truth. Stages 4 and
5 provide minimal additional improvement, indicating that further refinement
beyond Stage 3 yields diminishing returns.

TABLE III
COMPARISON OF PREDICTION WITH DIFFERENT NUMBER OF DECODERS

F1@{10,20,50} Edit Acc

Encoder 16.10 14.28 8.75 15.57 58.28

Encoder + 1 Decoder 56.49 49.95 33.70 53.89 61.05

Encoder + 2 Decoder 61.49 55.58 35.45 56.58 61.17

Encoder + 3 Decoder 62.64 57.05 36.91 58.78 61.16

Encoder + 4 Decoder 64.44 59.14 38.20 60.79 61.22

Encoder + 5 Decoder 64.27 59.40 38.28 60.92 61.23

F. Ablation Study
We perform an ablation study to analyze the contribution

of each component to overall performance, as shown in Table
IV. Each component incrementally improves segmentation
quality across multiple metrics. First, we replace the I3D
backbone with Swin Transformer for feature extraction. While
I3D yields relatively higher frame-wise accuracy, it is less
meaningful for GUI videos, as I3D captures actions across
every 8 frames and may overestimate for short actions. In
contrast, Swin Transformer leads to more precise predictions,
as reflected in the improved F1 scores and edit distance.

Adding a high-resolution branch significantly improves seg-
mentation performance, especially for F1@25 and F1@50,
indicating that fine-grained actions, which may be overlooked
in coarse predictions, are better captured with high-resolution
features. Incorporating the frame differencing block gives a
huge boost in overall performance. Finally, introducing a
multi-scale temporal convolution further enhances short-range
temporal segmentation quality as indicated by improvements
in F1@10 and F1@25. Qualitative results illustrating these
improvements are provided in Figure 4.

Fig. 4. Ablative segmentation results. The baseline model using I3D
overlooks short actions due to its coarse temporal resolution. Replacing I3D
with Swin Transformer produces more plausible predictions, but some fine-
grained actions are still missed. Adding a high-resolution branch provides finer
spatial detail, enabling the model to capture additional actions. Incorporating
a frame differencing block allows the model to detect subtle transitions,
further improving segmentation granularity. Finally, the multi-scale temporal
convolution (MST) effectively captures short actions that were previously
neglected or overshadowed by longer segments. The resulting prediction
closely aligns with the ground truth.

TABLE IV
COMPARISON OF ABLATION STUDY RESULTS

Params (M) F1@{10,20,50} Edit Acc

ASFormer with I3D 1.132 52.02 45.69 29.88 45.54 53.73

ASFormer with Swin 1.132 57.31 50.29 30.41 54.53 54.46

+ high-res branch 1.267 58.23 53.75 34.70 57.71 58.63

+ frame-diff 1.267 64.57 56.95 41.02 61.08 60.75

+ MST 76.773 66.36 61.14 41.36 61.81 61.83

We compare the proposed GUI-ASFormer with several
ASFormer variants in Table V. All models were trained using
Swin-based features to ensure consistency. The result shows
that our approach achieves significant enhancement across all
metrics. Especially, we improve the segmentation quality as
indicated by the enhancement in F1 scores. This underscores
the contribution of the high-resolution branch, frame differ-
encing module, and multi-scale temporal convolution.

Notably, MSTCN, a convolution-only architecture, performs
comparably to Transformer-based models. This may be due to
the dataset’s limited set of recognizable actions and shorter
video lengths, reducing the advantage of Transformer archi-
tectures. However, as noted in the original ASFormer paper,
Transformers generally outperform convolutional models, par-
ticularly on longer videos, suggesting that further benefits may
emerge in future studies on more complex GUI recordings.

TABLE V
COMPARISON WITH THE SOTA ON GUI-WORLD WEBSITE VIDEOS

Params (M) F1@{10,20,50} Edit Acc

MSTCN with Swin 0.798 56.85 47.87 29.92 55.34 53.36

ASFormer with Swin 1.132 57.31 50.29 30.41 54.53 54.46

FACT with Swin 10.418 57.32 49.93 34.13 49.89 56.40

UVAST with Swin 1.102 58.25 50.50 30.50 53.63 49.23

GUI-ASFormer 76.773 66.36 61.14 41.36 61.81 61.83



V. DISCUSSION

A. Performance on Different Splits

Since we did not perform cross-validation due to computa-
tional limitations, we instead evaluated the generalizability of
our model by providing an overall test result for each split, as
shown in Table VI. Each split achieved consistent results, with
slight differences observed across certain metrics and datasets.

In the original ASFormer settings, the model is known
to perform effectively on small datasets, which explains the
high performance we achieved even when training on limited
subsets. While our model introduces additional parameters
that could increase the risk of overfitting, the evaluation
results suggest that such effects are minimal. The low variance
across splits indicates that our model maintains robustness and
generalizability despite being trained on limited data.

TABLE VI
PERFORMANCE IN EACH SPLIT

F1@{10,20,50} Edit Acc

Split 1 66.36 61.14 41.36 61.81 61.83

Split 2 66.35 60.37 40.25 62.01 62.24

Split 3 66.67 60.86 41.29 62.64 65.12

Split 4 67.45 60.60 41.33 66.62 63.14

Split 5 66.88 60.38 40.04 61.69 61.99

Overall 66.74 60.47 40.85 62.95 62.87

B. Effect of Video Lengths

Our primary experiments focus on videos ranging from 5 to
50 seconds. To further analyze the effect of video length, we
separately evaluated the model’s performance on short videos
(5–10 seconds) and long videos (30–50 seconds). We sampled
approximately 100 training videos and 30 testing videos for
each group. The results show that models trained on longer
videos achieve substantially higher performance across all
metrics (Table VII). Possible reasons include: (1) longer videos
introduce greater variability, featuring more distinct actions
and transitions, and (2) models trained on short videos are
more prone to overfitting due to limited temporal diversity.

However, training on long videos is computationally much
more expensive, requiring more than three times the training
time compared to short videos. Given computational con-
straints and the desire to cover both short and long interactions
typical in GUI videos, our main experiments include videos
spanning from 5 to 50 seconds.

TABLE VII
COMPARISON OF TRAINING ON LONG/SHORT VIDEOS

F1@{10,20,50} Edit Acc

Short Videos 43.90 36.93 19.51 47.21 40.36

Long Videos 65.52 58.19 40.95 62.52 72.84

C. Alternative Designs and Limitations

Early fusion is a widely adopted technique in multimodal
learning, where features from different modalities are concate-
nated at an early stage for joint processing. We implemented
this using two separate encoders for from high- and low-
resolution streams, with their outputs concatenated to generate
initial predictions before being refined through multistage
decoding. The resulting average F1 scores are [53.87, 46.47,
32.92] and 60.11% accuracy, all of which are notably lower
than the performance achieved by the cross-attention-based
fusion method. These results suggest that early fusion, in most
cases, struggles to effectively integrate multimodal features
and cannot dynamically focus on salient information critical
for the task.

We also replaced the multiscale temporal convolution block
with a multiscale temporal attention module. However, the
design added ˜315M parameters, resulting in increased compu-
tational overhead. Given the relatively small size of the dataset
and the short length of many videos, this model exhibited
signs of overfitting, ultimately underperforming compared to
the convolution-based approach.

D. Video Language Model Performance

Recent work has introduced strong vision-language models
(VLMs), such as Video-LLaMA [27], which may identify
key frames of GUI videos with appropriate prompting. Ad-
ditionally, GUI grounding agents have also shown potential
for detecting action transitions via element-wise differences.
For example, SmolVLM [28] is a compact VLM specifically
designed for multimodal tasks and supports multi-frame input.
We conducted a zero-shot evaluation using SmolVLM on
a limited set of videos. However, the model demonstrated
poor performance, achieving only 35%–40% accuracy. Fur-
thermore, SmolVLM is not well-suited for handling very long
input sequences (e.g., around 300 frames simultaneously),
limiting its practicality for our task. While VLMs exhibit
strong generalization across diverse multimodal tasks, they are
inefficient when applied to domain-specific problems like GUI
action segmentation and lack the ability to model fine-grained
temporal dynamics effectively.

E. Future Work

Building upon the findings of this work, we identify several
directions for future research:

GUI-Based Embedding. GUI videos often contain subtle
and context-dependent elements, including structured layouts
and embedded text. While our current approach focuses on
frame-level image features, these representations may suffer
from compression and information loss. Future work can
explore advanced embedding methods such as Screen2Vec [5],
Pix2Code [6], or GUIBERT, which utilize both visual input
and structural metadata (e.g., raw HTML or layout trees).
These methods can provide more detailed and semantically
rich representations of GUI frames, potentially enhancing the
model’s ability to capture fine-grained action boundaries in
GUI video segmentation.



End-to-End Segmentation Model. Several prior ap-
proaches aim for unified video segmentation pipelines that
directly map video frames to action predictions. Due to com-
putational constraints, our current design separates processing
into lightweight spatial and temporal components. In the
future, we plan to unify these components into a single, end-to-
end model that can jointly learn spatiotemporal features. This
integration may further improve accuracy and generalization
across diverse GUI video datasets.

VI. CONCLUSION

In this work, we address the challenges of action segmenta-
tion in GUI videos, where subtle interactions and fine-grained
interface elements make traditional video segmentation ap-
proaches less effective. We adapt the ASFormer framework
with GUI-specific enhancements, including a two-stream en-
coder for low- and high-resolution feature extraction, a frame
differencing module to highlight subtle temporal changes, and
a multiscale temporal convolution block to capture both short-
and long-term dependencies. Our results demonstrate that each
component contributes to the overall performance, offering a
step forward in automating GUI understanding.
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